

Kinetic Simulation of the Oxidative Condensation of Methane

V. A. Makhlin^{a,*}, M. V. Magomedova^a, A. G. Zyskin^a, A. S. Loktev^{b, **},
 A. G. Dedov^b, and I. I. Moiseev^b

^a *Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Russia*

^b *Gubkin State University of Oil and Gas, Moscow, 119991 Russia*

e-mail: * makhlin@ips.ac.ru, ** al57@rambler.ru

Received March 3, 2011

Abstract—The kinetics of the oxidative condensation of methane (OCM) over a mixed-oxide lithium–manganese–tungsten–silicate catalyst has been simulated, and systems of stoichiometric chemical equations possible under the OCM conditions have thereby been discriminated. A phenomenological kinetic model has been developed to fit the observed rates of formation and disappearance of the compounds involved in OCM.

DOI: 10.1134/S0023158411060127

The oxidative conversion of methane (OCM) has been attracting researchers' attention all over the world for more than 30 years. It is among the promising processes for obtaining petrochemical synthesis products from natural gas, an alternative raw material. There have been many publications suggesting various catalysts and process conditions for OCM [1, 2].

A specific feature of OCM is that it needs high temperatures and is comparatively low-selective. Because of the high process temperature, OCM yields not only ethane and ethylene, but also a number of by-products, such as carbon monoxide and dioxide, water, and hydrogen. Although new, more selective composite oxide catalysts based on silicon, tungsten, and manganese have been proposed in recent years [3–8], the role of side reactions still remains significant [9].

The kinetics of OCM has been the subject of numerous studies [10–25]; however, the detailed mechanism of this reaction is still a matter of controversy. In view of this, most authors rely on phenomenological kinetic models [9, 26–33]. In our earlier work on the kinetics of OCM over lanthanum–cerium catalysts [33], we suggested phenomenological model (1), in which the OCM kinetics is approximated by the system of stoichiometric equations (I):

$$\begin{aligned} \frac{dy_{\text{CH}_4}}{d\tau} &= -4k_1 P^3 C_{\text{CH}_4} C_{\text{O}_2} - k_4 P^2 C_{\text{CH}_4} C_{\text{O}_2} \\ &\quad - 2k_7 P^2 C_{\text{CH}_4} C_{\text{O}_2}, \\ \frac{dy_{\text{O}_2}}{d\tau} &= -k_1 P^3 C_{\text{CH}_4} C_{\text{O}_2} - k_2 P^2 C_{\text{O}_2} C_{\text{C}_2\text{H}_6} \\ &\quad - 2k_3 P^2 C_{\text{C}_2\text{H}_4} C_{\text{O}_2} - 2k_4 P^2 C_{\text{O}_2} C_{\text{CH}_4} \\ &\quad - 3k_6 P^2 C_{\text{O}_2} C_{\text{C}_2\text{H}_4} - k_7 P^2 C_{\text{C}_2\text{H}_4} C_{\text{O}_2} \\ &\quad - 0.5k_8 P^{2.583} C_{\text{CH}_4}^{1.86} C_{\text{O}_2}^{0.723}, \end{aligned}$$

$$\begin{aligned} \frac{dy_{\text{C}_2\text{H}_4}}{d\tau} &= 2k_2 P^2 C_{\text{O}_2} C_{\text{C}_2\text{H}_6} - k_3 P^2 C_{\text{O}_2} C_{\text{C}_2\text{H}_4} \\ &\quad - k_6 P^2 C_{\text{O}_2} C_{\text{C}_2\text{H}_4} - 2k_8 P^{2.583} C_{\text{CH}_4}^{1.86} C_{\text{O}_2}^{0.723}, \\ \frac{dy_{\text{C}_2\text{H}_6}}{d\tau} &= 2k_1 P^2 C_{\text{CH}_4} C_{\text{O}_2} - 2k_2 P^2 C_{\text{O}_2} C_{\text{C}_2\text{H}_6} \\ &\quad - k_8 P^{2.583} C_{\text{CH}_4}^{1.86} C_{\text{O}_2}^{0.723}, \\ \frac{dy_{\text{C}_3\text{H}_6}}{d\tau} &= 2k_8 P^{2.583} C_{\text{CH}_4}^{1.86} C_{\text{O}_2}^{0.723}, \\ \frac{dy_{\text{CO}_2}}{d\tau} &= k_4 P^2 C_{\text{O}_2} C_{\text{CH}_4} - k_5 P^2 C_{\text{CO}_2} C_{\text{H}_2} \\ &\quad + \frac{k_5}{K_p} P^2 C_{\text{CO}} C_{\text{H}_2\text{O}} + 2k_6 P^2 C_{\text{C}_2\text{H}_4} C_{\text{O}_2}, \\ \frac{dy_{\text{CO}}}{d\tau} &= 2k_3 P^2 C_{\text{O}_2} C_{\text{C}_2\text{H}_4} + k_5 P^2 C_{\text{CO}_2} C_{\text{H}_2} \\ &\quad - \frac{k_5}{K_p} P^2 C_{\text{CO}} C_{\text{H}_2\text{O}}, \\ \frac{dy_{\text{H}_2}}{d\tau} &= -k_5 P^2 C_{\text{CO}_2} C_{\text{H}_2} + \frac{k_5}{K_p} P^2 C_{\text{CO}} C_{\text{H}_2\text{O}}, \\ \frac{dy_{\text{H}_2\text{O}}}{d\tau} &= 2k_1 P^3 C_{\text{CH}_4} C_{\text{O}_2} + 2k_2 P^2 C_{\text{O}_2} C_{\text{C}_2\text{H}_6} \\ &\quad + 2k_3 P^2 C_{\text{C}_2\text{H}_4} C_{\text{O}_2} + 2k_4 P^2 C_{\text{O}_2} C_{\text{CH}_4} + k_5 P^2 C_{\text{CO}_2} C_{\text{H}_2} \\ &\quad - \frac{k_5}{K_p} P^2 C_{\text{CO}} C_{\text{H}_2\text{O}} + 2k_6 P^2 C_{\text{O}_2} C_{\text{C}_2\text{H}_4} \\ &\quad + 2k_7 P^2 C_{\text{C}_2\text{H}_4} C_{\text{O}_2} + k_8 P^{2.583} C_{\text{CH}_4}^{1.86} C_{\text{O}_2}^{0.723}, \end{aligned} \quad (1)$$

where τ is the residence time, $y_i = W_i/W_0$ is the fraction of the i th component in the reaction stream (W_0 and W_i are the total feed flow rate and W_i is the flow rate of the i th component at the reactor inlet, respectively), P is the

total pressure in the system, $C_i = y_i / \sum_i y_i$ is the mole fraction of the i th component in the system, k_j is the rate constant of the j th reaction, and K_p is the equilibrium constant of the reversible reaction.

We used the same kinetic model and the same approximation to account for the kinetic data obtained with a LiWMn/SiO₂ catalyst [9].

Step no.	System (I) [9]
1	$4\text{CH}_4 + \text{O}_2 \rightarrow 2\text{C}_2\text{H}_6 + 2\text{H}_2\text{O}$
2	$2\text{C}_2\text{H}_6 + \text{O}_2 \rightarrow 2\text{C}_2\text{H}_4 + 2\text{H}_2\text{O}$
3	$\text{C}_2\text{H}_4 + 2\text{O}_2 \rightarrow 2\text{CO} + 2\text{H}_2\text{O}$
4	$\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}$
5	$\text{CO}_2 + \text{H}_2 \leftrightarrow \text{CO} + \text{H}_2\text{O}$
6	$\text{C}_2\text{H}_4 + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 2\text{H}_2\text{O}$
7	$2\text{CH}_4 + \text{O}_2 \rightarrow \text{C}_2\text{H}_4 + 2\text{H}_2\text{O}$
8	$\text{C}_2\text{H}_6 + 2\text{C}_2\text{H}_4 + 0.5\text{O}_2 \rightarrow 2\text{C}_3\text{H}_6 + \text{H}_2\text{O}$

Almost simultaneously with the appearance of our works, there were publications by other authors on the kinetics of OCM over similar catalysts [28, 34]. Shahri and Alavi [28] investigated the OCM kinetics on a Mn/Na₂WO₄/SiO₂ catalyst, varying the reaction temperature (800–900°C), methane : oxygen ratio (3.4–4.6), and residence time (85–345 kg s nm⁻³ (STP)). It was demonstrated that extending the residence time and raising the temperature improve the process outcomes, while increasing the methane-to-oxygen ratio decreases the methane and oxygen conversions. Addition of ethane, ethylene, CO, and CO₂ to the feed reduces the product formation rate. A kinetic model of OCM based on the system of stoichiometric equations (II) was suggested [28]. In this model, the reaction rates are written as follows:

$$r_1 = \frac{k_{01} \exp(-E_{a,1}/RT) P_{\text{CH}_4}^{ml} P_{\text{O}_2}^{n1}}{(1 + K_{1,\text{CH}_4} \exp(-\Delta H_{\text{ad},1,\text{CH}_4}/RT) P_{\text{CH}_4} + K_{1,\text{O}_2} \exp(-\Delta H_{\text{ad},1,\text{O}_2}/RT) P_{\text{O}_2})^2},$$

$$r_j = \frac{k_{0j} \exp(-E_{a,j}/RT) P_{\text{C}}^{mj} P_{\text{O}_2}^{nj}}{(1 + K_{j,\text{C}} \exp(-\Delta H_{\text{ad},j,\text{C}}/RT) P_{\text{C}}^{mj} + K_{j,\text{O}_2} \exp(-\Delta H_{\text{ad},j,\text{O}_2}/RT) P_{\text{O}_2}^{nj})^2}, \text{ where } j = 2, 3, 4, 6; \quad (2)$$

$$r_5 = k_{05} \exp(-E_{a,5}/RT) P_{\text{CO}_2}^{m5} P_{\text{H}_2}^{n5} - \frac{k_{05}}{K_p} \exp(-E_{a,5}/RT) P_{\text{CO}}^{m5} P_{\text{H}_2\text{O}}^{n5},$$

where P_{C} is the partial pressure of the hydrocarbon involved in the j th reaction, $E_{a,j}$ is the activation energy of the j th reaction, k_{0j} is the preexponential factor of the j th reaction, $\Delta H_{\text{ad},j,\text{O}_2}$ is the enthalpy of adsorption of oxygen on the catalyst surface for the j th reaction, K_{j,O_2} is the oxygen adsorption constant for the j th reaction,

Step no.	System (II) [28]
1	$4\text{CH}_4 + \text{O}_2 \rightarrow 2\text{C}_2\text{H}_6 + 2\text{H}_2\text{O}$
2	$2\text{C}_2\text{H}_6 + \text{O}_2 \rightarrow 2\text{C}_2\text{H}_4 + 2\text{H}_2\text{O}$
3	$\text{C}_2\text{H}_4 + 2\text{O}_2 \rightarrow 2\text{CO} + 2\text{H}_2\text{O}$
4	$\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}$
5	$\text{CO}_2 + \text{H}_2 \leftrightarrow \text{CO} + \text{H}_2\text{O}$
6	$\text{CH}_4 + 1.5\text{O}_2 \rightarrow \text{CO} + 2\text{H}_2\text{O}$

$\Delta H_{\text{ad},j,\text{C}}$ is the enthalpy of adsorption of the hydrocarbon involved in the j th reaction on the catalyst surface, $K_{j,\text{C}}$ is the adsorption constant of the hydrocarbon involved in the j th reaction, K_p is the equilibrium constant of the reversible reaction, m_j and n_j are the orders of the j th reaction, and r_j is the rate of the j th reaction.

Step no.	System (III) [34]
1	$4\text{CH}_4 + \text{O}_2 \rightarrow 2\text{C}_2\text{H}_6 + 2\text{H}_2\text{O}$
2	$2\text{C}_2\text{H}_6 + \text{O}_2 \rightarrow 2\text{C}_2\text{H}_4 + 2\text{H}_2\text{O}$
3	$\text{C}_2\text{H}_4 + 2\text{O}_2 \rightarrow 2\text{CO} + 2\text{H}_2\text{O}$
4	$\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}$
5	$\text{CO}_2 + \text{H}_2 \leftrightarrow \text{CO} + \text{H}_2\text{O}$
6	$\text{CH}_4 + \text{O}_2 \rightarrow \text{CO} + \text{H}_2\text{O} + \text{H}_2$
7	$\text{C}_2\text{H}_6 \rightarrow \text{C}_2\text{H}_4 + \text{H}_2$
8	$\text{C}_2\text{H}_4 + 2\text{H}_2\text{O} \rightarrow 2\text{CO} + 4\text{H}_2$
9	$2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$

The kinetics of OCM over a Mn/Na₂WO₄/SiO₂ catalyst at 750–875°C, methane : oxygen = 4.0–7.5, and a residence time of 30–160 kg s m⁻³ (STP) was investigated by Daneshpayeh et al. [34]. It was demonstrated that, as the residence time is extended, the

methane and oxygen conversions increase and the ethylene selectivity decreases. Raising the reaction temperature increases the methane conversion and ethylene selectivity and reduces the ethane selectivity. As the methane-to-oxygen ratio is increased, the ethane

selectivity increases and the ethylene selectivity remains invariable. The reaction kinetics was described by the authors in terms of the model sug-

gested earlier for a $\text{La}_2\text{O}_3/\text{CaO}$ catalyst [35]. This model is based on the system of stoichiometric equations (III):

$$\begin{aligned}
 r_1 &= \frac{k_{01} \exp(-E_{a,1}/RT) (K_{0,\text{O}_2} \exp(-\Delta H_{\text{ad},\text{O}_2}/RT) P_{\text{O}_2})^{n^1} P_{\text{CH}_4}^{m^1}}{\left(1 + (K_{0,\text{O}_2} \exp(-\Delta H_{\text{ad},\text{O}_2}/RT) P_{\text{O}_2})^{n^1}\right)^2}, \\
 r_j &= k_{0j} \exp(-E_{a,j}/RT) P_{\text{C}}^{m^j} P_{\text{O}_2}^{n^j}, \text{ where } j = 2, 3, 4, 6, 9, \\
 r_5 &= k_{05} \exp(-E_{a,5}/RT) P_{\text{CO}_2}^{m^5} P_{\text{H}_2}^{n^5} - \frac{k_{05}}{K_p} \exp(-E_{a,5}/RT) P_{\text{CO}}^{m^5} P_{\text{H}_2\text{O}}^{n^5}, \\
 r_7 &= k_{07} \exp(-E_{a,7}/RT) P_{\text{C}_2\text{H}_6}, \\
 r_8 &= k_{08} \exp(-E_{a,8}/RT) P_{\text{C}_2\text{H}_4}^{m^8} P_{\text{H}_2\text{O}}^{n^8}.
 \end{aligned} \tag{3}$$

Note that the above rate equations [28, 35] involve the heats of adsorption of methane, oxygen, CO_2 , and carbon. According to the theory of complex reactions [36], use of the concept of the rate of the overall reaction (stoichiometric equation of a reaction pathway) in the kinetic description of a complex reaction makes sense only if there is a hypothesis as to the detailed mechanism of this reaction. If there is no such hypothesis, it is possible to take a phenomenological approach in which some reaction rate is assigned to each stoichiometric equation; however, only the rates with respect to particular compounds will have a physical meaning in this case. When several reactions take place, the rates of particular reactions cannot be measured by physical methods.

Note also that the cumbersome kinetic models suggested in [28, 35] involve tens of kinetic parameters. At the same time, it is known from the theory of solving inverse problems [37] that, when the number of parameters is so large as to be comparable with the number of experiments, some parameters may be correlated, and this would considerably devalue the model and would make the values of the fitted parameters less reliable. Because of the awkwardness of these kinetic models, it is difficult to distinguish their most significant properties.

Shahri and Alavi [28] used Fisher's and Student's tests to validate their phenomenological model. However, use of statistical tests needs some assumptions to be made. The most important of them is the linearity of the equations of the correlation model, whereas this is not the case for chemical kinetic equations.

Examination of stoichiometric equations (I)–(III) demonstrates that, in all of the reaction systems suggested, the OCM products form via the following reactions: ethane results from direct methane oxidation; ethylene, from the oxidative dehydrogenation of ethane; CO , from ethylene oxidation and from partial methane oxidation; CO_2 , from total methane oxidation and from the water gas shift reaction; H_2 , from the water gas shift reaction and from partial methane ox-

dation; H_2O , from hydrocarbon (methane, ethane, and ethylene) oxidation.

Reaction system (I), as distinct from (II) and (III), includes direct methane oxidation into ethylene and a C_3 hydrocarbon formation reaction. Reaction system (III) includes partial methane oxidation into CO , H_2 , and H_2O ; ethane dehydrogenation; and the steam ethylene reforming reaction.

The purpose of this work is to analyze and discriminate systems of stoichiometric reactions that can be involved in OCM.

RESULTS AND DISCUSSION

An analysis of the above systems of overall chemical equations suggests that OCM can be described in terms of another system of stoichiometric equations (system (IV)). This system takes into account that ethane dehydrogenation into ethylene and steam ethane reforming can occur at high temperatures and excludes ethylene formation via direct methane oxidation as an unlikely reaction.

Step no.	System (IV)
1	$4\text{CH}_4 + \text{O}_2 \rightarrow 2\text{C}_2\text{H}_6 + 2\text{H}_2\text{O}$
2	$2\text{C}_2\text{H}_6 + \text{O}_2 \rightarrow 2\text{C}_2\text{H}_4 + 2\text{H}_2\text{O}$
3	$\text{C}_2\text{H}_4 + 2\text{O}_2 \rightarrow 2\text{CO} + 2\text{H}_2\text{O}$
4	$\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}$
5	$\text{CO}_2 + \text{H}_2 \leftrightarrow \text{CO} + \text{H}_2\text{O}$
6	$\text{C}_2\text{H}_4 + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 2\text{H}_2\text{O}$
7	$\text{C}_2\text{H}_6 \rightarrow \text{C}_2\text{H}_4 + \text{H}_2$
8	$\text{C}_2\text{H}_6 + 2\text{H}_2\text{O} \rightarrow 2\text{CO} + 5\text{H}_2$

Thus, the above qualitative analysis demonstrated that four systems of stoichiometric chemical equations are possible, and, therefore, they need to be discriminated.

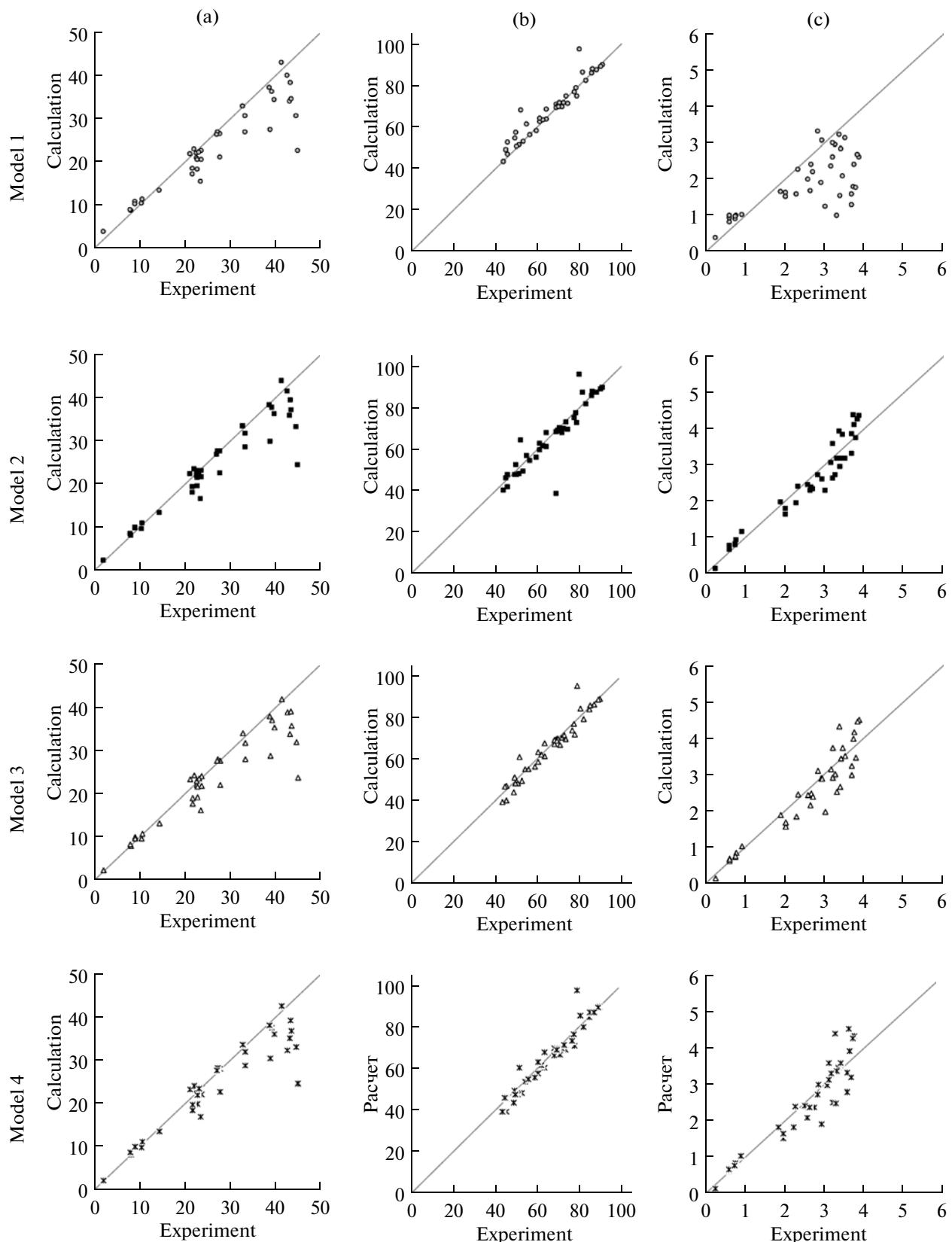
Table 1. Experimental kinetic data for the OCM process over the lithium–manganese catalyst

CH ₄ : O ₂	T, °C	W, ml/h	Inlet flow rate, ml/h			Outlet flow rate, ml/h										
			CH ₄	O ₂	N ₂	H ₂	O ₂	N ₂	CO	CH ₄	CO ₂	C ₂ H ₄	C ₂ H ₆	C ₃ H ₆	C ₃ H ₈	C ₄ H ₈
2.00	857	2992	1938	969	85	0	55	85	286	1097	139	145	44	8	1	3
2.00	884	2960	1912	956	93	0	46	93	312	1093	130	135	37	7	1	3
2.00	911	2989	1934	967	89	0	32	89	321	1132	129	129	35	1	7	0
2.13	854	5910	3967	1862	81	1	141	81	574	2178	272	318	106	18	3	8
2.09	897	5809	3882	1857	70	0	51	70	641	2186	273	284	75	16	0	4
2.32	932	5739	3949	1702	88	0	42	88	663	2231	276	278	72	16	1	7
2.11	742	6038	3959	1876	203	0	1802	203	6	3884	9	6	24	0	0	0
1.98	801	5957	3851	1945	161	0	1641	161	37	3503	27	52	87	1	1	0
2.24	885	5672	3874	1729	69	1	111	69	600	2138	262	309	84	18	2	7
2.36	878	5944	4126	1748	70	0	123	70	503	2516	216	311	92	18	1	7
2.42	911	5901	4121	1703	77	0	70	77	545	2474	214	303	88	20	2	10
2.42	924	5925	4137	1710	78	0	56	78	572	2509	210	296	79	19	1	9
2.44	933	5812	4068	1667	77	1	45	77	579	2490	202	283	74	16	1	8
3.06	830	5866	4408	1441	17	0	1114	17	61	3771	35	114	124	5	2	11
3.18	897	5938	4463	1403	72	1	92	72	414	2967	163	313	108	18	1	5
3.18	926	5992	4499	1415	78	1	51	78	449	2993	152	306	96	17	2	11
3.06	944	5966	4436	1450	80	1	33	80	472	2979	158	289	86	19	0	5
3.60	827	6115	4770	1325	20	0	1002	20	41	4263	25	90	116	3	0	5
3.99	882	5791	4581	1148	62	1	134	62	277	3300	118	292	111	18	2	5
3.75	915	6119	4770	1272	77	1	65	77	343	3436	126	293	93	21	2	6
3.97	930	6042	4763	1200	79	1	47	79	358	3457	124	286	84	19	1	6
4.20	938	5914	4711	1122	81	1	42	81	372	3433	117	278	79	17	0	6
4.80	822	6029	4970	1035	24	0	757	24	23	4571	14	64	108	4	2	0
4.60	879	6017	4894	1064	59	1	154	59	162	3779	74	265	140	2	17	3
5.20	908	5863	4858	934	71	1	70	71	198	3758	81	263	113	17	2	3
5.48	933	5830	4862	887	81	1	41	81	230	3831	81	246	84	16	0	3
4.56	827	6688	5469	1199	20	0	915	20	26	5037	17	69	115	4	3	0
5.25	875	6500	5414	1031	55	1	238	55	193	4141	81	307	152	19	4	3
5.25	912	6582	5471	1042	69	1	92	69	255	4177	97	305	115	24	2	6
5.25	940	6611	5487	1045	79	1	52	79	301	4180	94	297	105	23	1	9
4.87	822	4807	3965	814	28	0	598	28	28	3551	16	64	86	4	2	13
5.23	877	4762	3944	754	64	1	119	64	162	3083	64	206	90	12	1	1
4.87	899	4791	3917	804	70	0	69	70	179	3027	69	208	81	14	2	4
5.18	931	4824	3967	766	91	1	40	91	240	3086	71	196	60	13	1	4
5.00	828	5276	4375	875	26	0	684	26	31	3978	16	72	97	3	1	0
5.15	872	5212	4324	840	48	1	160	48	142	3383	66	223	111	13	6	2
5.47	906	5234	4368	799	67	1	88	67	213	3370	75	232	86	15	3	5
5.42	932	5278	4399	812	67	0	45	67	218	3380	74	230	72	19	6	12

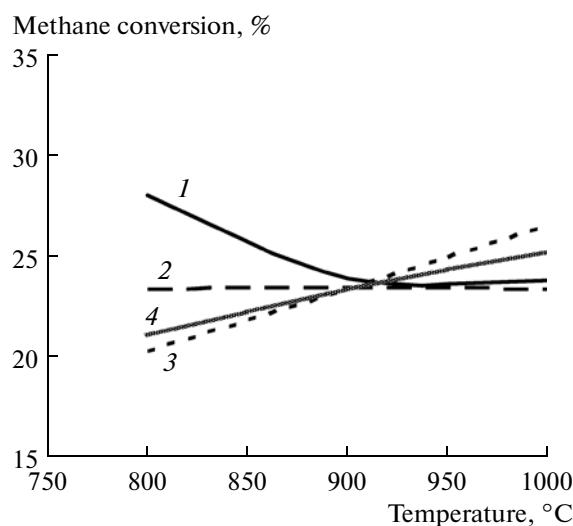
Table 2. Phenomenological models of OCM

Model 1	Model 2	Model 3	Model 4
$r_1 = k_1 P_{\text{CH}_4}^2 P_{\text{O}_2}$	$r_1 = P_{\text{CH}_4} P_{\text{O}_2}$	$r_1 = k_1 P_{\text{CH}_4} P_{\text{O}_2}$	$r_1 = P_{\text{CH}_4} P_{\text{O}_2}$
$r_2 = k_2 P_{\text{C}_2\text{H}_6} P_{\text{O}_2}$	$r_2 = k_2 P_{\text{C}_2\text{H}_6} P_{\text{O}_2}$	$r_2 = k_2 P_{\text{C}_2\text{H}_6} P_{\text{O}_2}$	$r_2 = k_2 P_{\text{C}_2\text{H}_6} P_{\text{O}_2}$
$r_3 = k_3 P_{\text{C}_2\text{H}_4} P_{\text{O}_2}$	$r_3 = k_3 P_{\text{C}_2\text{H}_4} P_{\text{O}_2}$	$r_3 = k_3 P_{\text{C}_2\text{H}_4} P_{\text{O}_2}$	$r_3 = k_3 P_{\text{C}_2\text{H}_4} P_{\text{O}_2}$
$r_4 = k_4 P_{\text{CH}_4} P_{\text{O}_2}$	$r_4 = k_4 P_{\text{CH}_4} P_{\text{O}_2}$	$r_4 = k_4 P_{\text{CH}_4} P_{\text{O}_2}$	$r_4 = k_4 P_{\text{CH}_4} P_{\text{O}_2}$
$r_5 = k_5 P_{\text{CO}_2} P_{\text{H}_2} - k_5 P_{\text{CO}} P_{\text{H}_2\text{O}} / K_p$	$r_5 = k_5 P_{\text{CO}_2} P_{\text{H}_2} - k_5 P_{\text{CO}} P_{\text{H}_2\text{O}} / K_p$	$r_5 = k_5 P_{\text{CO}_2} P_{\text{H}_2} - k_5 P_{\text{CO}} P_{\text{H}_2\text{O}} / K_p$	$r_5 = k_5 P_{\text{CO}_2} P_{\text{H}_2} - k_5 P_{\text{CO}} P_{\text{H}_2\text{O}} / K_p$
$r_6 = k_6 P_{\text{C}_2\text{H}_4} P_{\text{O}_2}$	$r_6 = k_6 P_{\text{CH}_4} P_{\text{O}_2}$	$r_6 = k_6 P_{\text{CH}_4} P_{\text{O}_2}$	$r_6 = k_6 P_{\text{C}_2\text{H}_4} P_{\text{O}_2}$
$r_7 = k_7 P_{\text{CH}_4} P_{\text{O}_2}$		$r_7 = k_7 P_{\text{C}_2\text{H}_6}$	$r_7 = k_7 P_{\text{C}_2\text{H}_6}$
$r_8 = k_8 P_{\text{CH}_4}^n P_{\text{O}_2}^m$, where $n = 1.86$, $m = 0.723$		$r_8 = k_8 P_{\text{C}_2\text{H}_4} P_{\text{H}_2\text{O}}$ $r_9 = k_9 P_{\text{CO}} P_{\text{O}_2}$	$r_8 = k_8 P_{\text{C}_2\text{H}_4} P_{\text{H}_2\text{O}}$

Table 3. Kinetic parameters of models 1–4*


Constant	Model 1		Model 2		Model 3		Model 4	
	A_i	E_i/R	A_i	E_i/R	A_i	E_i/R	A_i	E_i/R
k_1	21.16	−13820	35.04	−27820	34.54	−27261	35.09	−28585
k_2	10.07	−9910	40.47	−30000	40.45	−30000	39.76	−30000
k_3	33.32	−23790	34.62	−24758	29.68	−18919	33.91	−24065
k_4	29.88	−30000	37.03	−32564	21.00	−16729	29.94	−30000
k_5	9.83	−3000	11.94	−2000	12.71	−8251	13.05	−7950
k_6	26.96	−17380	17.07	−16050	35.96	−33942	26.78	−16800
k_7	36.55	−30000	—	—	14.09	−9931	28.06	−21967
k_8	16.62	−30000	—	—	14.66	−6460	29.60	−25257
k_9	—	—	—	—	16.35	−3575	—	—

* $\ln k_i = A_i + E_i/RT$.


Discrimination of systems of stoichiometric chemical equations was carried by simulating the kinetic experiment reported in an earlier work [9] (Table 1). Because a correct kinetic description of complex reactions is possible only for particular compounds, we used the corresponding phenomenological models. In addition to the existing kinetic model developed earlier in order to approximate reaction system (I) [9], phenomenological models for approximating reaction systems (II)–(IV) were also constructed. For this purpose, using the least-squares method and the Davison–Fletcher–Powell minimization method [38], we

found the kinetic parameters providing the best fit to the experimental data presented in Table 1 and set up rate equations for the systems of stoichiometric equations (II)–(IV) (Table 2).

In model 1, the rate of methane oxidation into ethane is second-order with respect to methane and the rate of the C_{3+} hydrocarbon formation reaction is of fractional order with respect to methane and oxygen (Table 2). In models 2–4, all rate equations are first-order with respect to the reactants. The calculated Arrhenius parameters of the reactions are listed in Table 3. We suppose that the rates have dimensions of

Fig. 1. Correlation plots for the (a) methane conversion, (b) C₂ hydrocarbon selectivity, and (c) ethylene : ethane ratio.

Fig. 2. Temperature dependence of the methane conversion ($P=0.1$ MPa, oxygen conversion of 95%, $\text{CH}_4:\text{O}_2=5$) calculated for models (1), (2), (3), and (4).

ml/h/g(Cat) and the partial pressures have dimensions of atm.

Using these kinetic parameters, we calculated the methane conversion, the C_2 hydrocarbon selectivities, and the ethylene : ethane ratio for the conditions of particular experiments. The results of these calculations are represented as correlation plots in Fig. 1.

It is clear from these plots that all of the four models provide a good fit, with a very small scatter of data points, to the experimental C_2 hydrocarbon selectivities. The experimental ethylene : ethane data are described well, also with a small scatter of data points, by models 2–4, while model 1 leads to a marked underestimation of these data. None of the models provides a good fit to the methane conversion data, with data points scattered in nearly the same way for all of the models.

It was, therefore, of interest to simulate the OCM kinetics in order to establish relationships between the methane conversion and basic process parameters.

The simulation was carried out in the isothermal quasi-homogeneous plug flow reactor approximation for the conditions that were demonstrated in an earlier work [9] to be of greatest interest to the industry: excess methane ($\text{CH}_4:\text{O}_2=5$), $P=0.1$ MPa, and $T=800\text{--}1000^\circ\text{C}$ (Fig. 2).

In model 1, raising the reaction temperature leads to a decrease in the methane conversion (Fig. 2). In model 2, the methane conversion is temperature-independent. In models 3 and 4, the methane conversion increase with an increasing temperature, and this is in agreement with experimental observations [28, 34].

The mean relative errors for the reactant concentrations calculated in the framework of the four models are given in Table 4.

It can be seen from Table 4 that, as compared to the other models, model 1 leads to the greatest errors for most reactants (16.4–21.4%) and model 4 leads to the smallest errors (13.2–17.0%). Therefore, model 4 is the most adequate.

Thus, we have examined different systems of stoichiometric equations approximating the OCM process over the $\text{Li}-\text{Mn}-\text{W}/\text{SiO}_2$ oxide catalyst. For these systems, we have developed phenomenological kinetic models describing the rates of variation of reactant concentrations and have determined the kinetic parameters. The OCM process has been simulated for an isothermal plug-flow reactor. Based on the results of this simulation, we have discriminated between possible OCM routes. The system of stoichiometric equations (IV) provides the best fit to the observed OCM kinetics.

ACKNOWLEDGMENTS

This study was supported by the Federal Target Program “Research and Pedagogical Cadre for Innovative Russia” for 2009–2013, by the Russian Foundation for Basic Research (grant nos. 11-08-00380-a and 10-03-00582), by the Federal Agency for Education through the program “Development of the Scientific Potential of the Higher Education Institutions” for 2000–2011 (grant no. 9762), and by Grants from the

Table 4. Mean relative errors in the calculation of compound concentrations for models 1–4

Compound	Relative error, %			
	model 1	model 2	model 3	model 4
CH_4	16.4	13.5	14.7	13.2
O_2	19.2	16.8	16.5	15.7
C_2H_4	24.2	14.5	15.9	17.0
C_2H_6	19.0	13.2	12.2	10.2
CO_2	20.4	29.1	20.8	15.6
CO	21.4	15.1	21.3	15.7

President of the Russian Federation for Supporting Young Russian Scientists and Leading Scientific Schools (project NSh-65264.2010.3, Academician I.I. Moiseev's scientific school).

REFERENCES

1. Krylov, O.V. and Arutyunov, V.S., *Okislitel'nye prevrashcheniya metana* (Oxidative Conversions of Methane), Moscow: Nauka, 1998.
2. Sinev, M.Yu., Fattakhova, Z.T., Lomonosov, V.I., and Gordienko, Yu.A., *J. Nat. Gas Chem.*, 2009, vol. 18, no. 3, p. 273.
3. Xu, L., Xie, S., Liu, S., Lin, L., Tian, Z., and Zhu, A., *Fuel*, 2002, vol. 81, p. 1593.
4. Chou, L., Cai, Y., Zhang, B., Niu, J., Ji, S., and Li, S., *React. Kinet. Catal. Lett.*, 2002, vol. 76, no. 2, p. 311.
5. Ji, S., Xiao, T., Li, S., Chou, L., Zhang, B., Xu, C., Hou, R., York, A.P.E., and Green, M.L.H., *J. Catal.*, 2003, vol. 220, p. 47.
6. Li, S., *J. Nat. Gas Chem.*, 2003, vol. 12, no. 1, p. 1.
7. Makri, M. and Vayenas, C.G., *Appl. Catal., A*, 2003, vol. 244, p. 301.
8. Nipan, G.D., Dedov, A.G., Loktev, A.S., Ketsko, V.A., Kol'tsova, T.N., Tyunyaev, A.A., and Moiseev, I.I., *Dokl. Phys. Chem.*, 2008, vol. 419, part 2, p. 73.
9. Dedov, A.G., Makhlin, V.A., Podlesnaya, M.V., Zyskin, A.G., Loktev, A.S., Tyunyaev, A.A., Nipan, G.D., Kol'tsova, T.N., Ketsko, V.A., Kartashova, M.N., and Moiseev, I.I., *Theor. Found. Chem. Eng.*, 2010, vol. 44, no. 1, p. 1.
10. Aika, K. and Lunsford, J.H., *J. Phys. Chem.*, 1977, vol. 81, p. 1393.
11. Ito, T., Wang, J., Lin, C.H., and Lunsford, J.H., *J. Am. Chem. Soc.*, 1985, vol. 107, no. 18, p. 5062.
12. Driscoll, D.J., Martin, W., Ji-Xiang Wang, J.H., and Lunsford, J.H., *J. Am. Chem. Soc.*, 1985, vol. 107, no. 1, p. 58.
13. Sinev, M.Yu., Vorob'eva, G.A., and Korchak, V.N., *Kinet. Katal.*, 1986, vol. 27, no. 5, p. 1164.
14. Campbell, K.D. and Lunsford, J.H., *J. Phys. Chem.*, 1988, vol. 92, no. 20, p. 5792.
15. Wada, S., Tagawa, T., and Imai, H., *Appl. Catal.*, 1989, vol. 47, no. 2, p. 277.
16. Tong, Y., Rosynek, M.P., and Lunsford, J.H., *J. Phys. Chem.*, 1989, vol. 93, no. 8, p. 2896.
17. Feng, Y., Niiranen, J., and Gutman, D., *J. Phys. Chem.*, 1991, vol. 95, no. 17, p. 6558.
18. Lehman, L. and Baerns, M., *Catal. Today*, 1992, vol. 13, p. 265.
19. Zanthoff, H., Zang, Z., Grzybek, T., Lehman, L., and Baerns, M., *Catal. Today*, 1992, vol. 13, p. 469.
20. Shi, S., Xu, M., Rosynek, M.P., and Lunsford, J.H., *J. Phys. Chem.*, 1993, vol. 97, no. 1, p. 216.
21. Amorebieta, V.T. and Colussi, A.J., *J. Am. Chem. Soc.*, 1995, vol. 117, no. 13, p. 3856.
22. Simon, Y., Baronnet, F., Come, G.M., and Marquaire, P.M., *Stud. Surf. Sci. Catal.*, 2004, vol. 147, p. 571.
23. Simon, Y., Baronnet, F., and Marquaire, P.M., *Ind. Eng. Chem. Res.*, 2007, vol. 46, p. 1914.
24. Takanabe, K. and Iglesia, E., *Angew. Chem., Int. Ed. Engl.*, 2008, vol. 47, p. 7689.
25. Takanabe, K. and Iglesia, E., *J. Phys. Chem.*, 2009, vol. 113, no. 23, p. 10131.
26. Stansch, Z., Mleczko, L., and Baerns, M., *Ind. Eng. Chem. Res.*, 1997, vol. 36, p. 2568.
27. Daneshpayeh, M., Khodadadi, A., Mostoufi, N., Mortazavi, Y., Sotudeh-Gharebagh, R., and Talebizadeh, A., *Fuel Process. Technol.*, 2009, vol. 90, p. 403.
28. Shahri, S.M.K. and Alavi, S.M., *J. Nat. Gas Chem.*, 2009, vol. 18, no. 1, p. 25.
29. Traykova, M., Davidova, N., Tshai, J.-S., and Weiss, A.H., *Appl. Catal., A*, 1998, vol. 169, no. 2, p. 237.
30. Olsbye, U., Desgrantchamps, G., Jens, K.-J., and Kolboe, S., *Catal. Today*, 1992, vol. 13, p. 209.
31. Tye, C.T., Mohamed, A.R., and Bhatia, S., *Chem. Eng. J.*, 2002, vol. 87, p. 49.
32. Nouralishahi, A., Pahlavanzadeh, H., and Daryan, J.T., *Fuel Process. Technol.*, 2008, vol. 89, p. 667.
33. Makhlin, V.A., Podlesnaya, M.V., Dedov, A.G., Loktev, A.S., Tel'pukhovskaya, N.O., and Moiseev, I.I., *Ross. Khim. Zh.*, 2008, vol. 52, no. 5, p. 73.
34. Daneshpayeh, M., Khodadadi, A., Mostoufi, N., Mortazavi, Y., Sotudeh-Gharebagh, R., and Talebizadeh, A., *Fuel Process. Technol.*, 2009, vol. 90, p. 403.
35. Stansch, Z., Mleczko, L., and Baerns, M., *Ind. Eng. Chem. Res.*, 1997, vol. 36, p. 2568.
36. Temkin, M.I., *Adv. Catal.*, 1979, vol. 28, p. 173.
37. Dreiper, N. and Smit, G., *Prikladnoi regressionnyi analiz* (Applied Regression Analysis), Moscow: Finansy i Statistika, 1986.
38. Fletcher, R. and Powell, M.J.D., *Comput. J.*, 1963, vol. 6, no. 2, p. 163.